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ON THE THEORY OF ELASTIC NONHOMOGENEOUS MEDIA 

WITH A REGULAR STRUCTURE 
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(Novosibirsk) 
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We give the theoretical description of regular elastic structures in an unbounded 
elastic medium with congruent (doubly-periodic) groups of arbitrary foreign in- 
clusions. Within the limits of a group the elastic characteristics of the inclusions 
are distinct and their configurations are sufficiently arbitrary. We construct a 
model anisotropic medium which has the rigidity of the original structure. 
References on problems of the theory of elastic regular structures can be found 

in[l-31. 
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1. Formulation of the brsic problem. We consider an elastic nonhomo- 
geneous medium with a periodic structure. Let oi, o2 (Jmw, 7 0, Jmo,/o, > 0) 

be its fundamental periods. Inside the parallelogram of periods LI,,, (m, n = 0, j,l, 

_t . ..) g p f a rou o nonintersecting inclusions is contained. Each of the inclusions occu- 
pies a finite simply-connected domain oh,, bounded by a simple, closed, sufficiently 
smooth contour Lh, (j = 1, 2 . . . , k; m, rz x 0, _+ 1, t . ..). We denote the union 
of all the L’,, within the limits of a group by l,,,,,, and the unbounded domain occu- 

pied by the homogeneous medium by D. Then the complete boundary of D is L == 

Ul m, ,I’ We place the origin inside the domain D,,‘, contained in the fundamental 
period parallelogram Il,,. Because of the congruence of the groups we have L,f,, = 
Looi (mode,, @. For a fixed j, each system of congruent inclusions DA, is charac- 
terized by any of their representative, for example, Doni, with modulus of elasticity 
Ej and Poisson ratio pj (j = 1, 2 . . . , fi). We denote the modulus of elasticity and the 

Poisson’s ratio for the fundamental medium by E and l_t ,respectively. 

We assume that within the limits of the period parallelogram rIllL, the average stres- 
ses which act are St, S, and St,, that the stress vector varies continuously at the pas- 

sage from D to DA, (j -= 1,2, . . , k; m,, n = 0. +I, t, . . .), and that the displa- 
cement vector undergoes a discontinuity gj (t), t F LA,, (Fig. 1). 

t 

J-J /-/ 
Fig. 1 

- 

- 

- 

The problem consists in the description of the state of stress of the structure under 
consideration and also in the construction of a homogeneous anisotropic model medium. 
The latter forms the substance of the reduction problem for the structure and consists 
essentially in the establishment of the relation between the average stresses and the ave- 
rage strains. 

The assignment of the same average stresses to all parallelograms II,,,, implies the 
periodic character of the stresses and, under additional conditions, the periodicity of the 

rotations and the quasi-periodicity of the displacements in D. 
Indeed, the resultant force, acting along the arbitrary curve AB at D, has the form 

r41 
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xl-iy= \ (xn+iyn)ds= -k(z)fi, g(Z)='P(z)+zcp')+qj(;1.1) 
ALA 

Then the static conditions, ensuring identical average stresses for each period prallelo- 

gram, can be represented in the form 

g (2 + WJ -g (2) = - i (S,, + S2+)wl, a = we2 

g (2 -I- CO?) -g (2) = i (& + &,e9 1 o2 I 

(1.2) 

From the identities (1.2) we obtain the quasi-perindicity of the function g (z), while 
their differentiation with respect to z and E leads us to the relations 

Re cp’ (z) I:+“” = 0, (Q” (2) + Y (2)) l:+“” = 0, v == 2, 2 (1.3) 

From here we obtain the periodicity of the stresses in D. The quasi-periodicity of the 

displacements follows from the formulas [4] 
- - 

h (z) = 2G (u + iv) = x(P (2) - q’ (2) -q (2) = (x + 1) cp (z) - g (2) (1.4) 

taking into account that by virtue of (1.3) and of the assumption on the periodicity of 

the rotations, the function ‘p (z) is quasi-periodic. Conversely, one can show that from 

the condition of the quasi-periodicity of the displacements there follows the periodicity 
of the stresses and the quasi-periodicity of the function g (z) in D. 

Proceeding from the stated considerations, the formulation ot the fundamental prob- 
lem can be made in the following manner: construct functions cp (z), IJ (z) and cpj (z), 

s#j (z),regular in the domains D, DUO' (j = 1,2, . . . . k) and satisfying on I,,, the con- 
ditions of the junction of the media and of the inclusions 

- - 
Cp (t) + t Cp’ (t) + $6 = Cpj (t) + tOj’ (t) + *j (t)7 t E L00’ (1.5) 

+ Cp tt) - + itcp’(t) + $ tt)l = z Cpj Ct) - & (45’ Ct) + $3)) + %j Ct) 
j 

GE E *5 
2 (1 + PL) ' Gj = 2(1$ pj) ’ 

3-P 
X=-V 

3 - Pj 

%=l+7 j=i,2 , . . ., k 

(in the case of plane deformation x = 3--_4.r,, xj = 3-4 pj) and the static condi- 
tions (1.2). Obviously, it is understood that all the periodicity conditions are satisfied 
automatically at the expense of the special form of representation of the desired regular 
functions. 

We carry out these representations by making use of ideas contained in [S] and of the 
solving scheme of the first fundamental doubly-periodic problem of the theory of elas- 

ticity, developed in [3]. We write 

cp (z) = Y& s p (t) 5 (t - z) dt + 4 z E Do,?, i = 1, 2,. . ., k (1.6) 

loo 

q~ (z) = & 1 {t’ @)3(t) - FP’ (t> + r(t) rl @>I 5 (t - 4 dt + 
la, 

& ’ p (q ~1 (t - z> dt + Bz 
s 
[@a 



248 L.A.Fil'shtinskii 

Here 5 (2) is the Weierstrass zeta-function [S], p1 is a special meromorphic function 

L3, 71* JJ (t) = {Pj (t)~ t E LOOj> and q (t) = (qj (t), t E LaOi) are, in general, com- 
plex functions subject to determination on LOO . The piecewise constants E (t) = (Ej7 

t E &,}, r (t) = {rj, t ELoi} and the constants A, B, aj and p1 (i = 1,2, ... 7 
k) are arbitrary for the present. The integration is taken in the counterclockwise direc- 
tion. The representations (1.6) guarantee the double periodicity of the stresses and the 
quasi-periodicity of the displacements in D. This follows immediately from the quasi- 
periodicity of the Weierstrass zeta-function and from the realtions [7] 

Pl (2 + 4 - Pl (4 = Gp (4 + yv 

TV = 2Pl (-+‘P($)’ Y=1,2 (1.7) 

where p (z) is the Weierstrass elliptic function. 
We determine the constants d and B occurring in (1.6) so that the static conditions 

(1.2) should be satisfied. Making use of (1.6) and of the formulas (1.7), we reduce (1.2) 
to a system of two equations in A and B 

(A + 2) co1 + B, + 6,b + fl b--- &a = - io, (S,, + S,eia) 

(A + 2) co2 + gz2 + S,b + r26 - 6,; = i J co2 1 (S, + S1,ei”) 

a = & $ ((8 V) P (0 + (1.8) 
hNl 

b = - -& ’ p(t) dt, 
s 

The solution of this system has the form 

B=BL-- & (& + 2s 12e-ia + S2e-2ia), Rc AL = Re ($ a j- % b - E) 

ReA=Re&+ & (S, + 2S1, cos a + S,), S = co1 Im o2 (1.9) 

BL ==vb--$Reb- [q--$)Rea, cx= argo, 

The compatibility condition of the system (1.8) is the equality 

2n Ima = Re s {(~(t)fi(t)f r(t) q(t) + p(t)&} = 0 (1 .lO) 

Let us give its mechanical interpretation. To this end we consider the expression of 
the principal moment of the forces acting along 1,” from the side of the domain 1). 
We have [4] 

M = Re Sq(t)% = Re l{q(t) +t(P’ + $l(t)}dt 
loo 1.D 

j = 1, 2,. .( k 

(I.-u) 

Taking the limit in the second of the formulas (1.6), we find 



On the theory of elastic nonhomogeneous media 249 

$(t)=++(t)-(E(t)p(t)-lp’(t)+r(t)qO), tELo,i, i-1s2,...lk (1.12) 

Here II, (t) is the limiting value of the function, regular in D, while $’ (t) are the 
limiting values of the functions, regular in the simply connected domains Ii,,j. Inte- 

grating by parts in (1.11) and substituting for $ (t) its value from (1.12). we obtain 

M = - Re 1 {(e (t)P(t) + r (t) 4 dt i- P (t) z> 
lw 

(1.13) 

From the formula (1.13) it follows that the compatibility condition (1.10) guarantees 
the vanishing of the principal moment of the forces acting on the boundary Z,,, from 

the side of the domain D . From here, in particular, it follows that under the condition 

(1. lo), the principal moment of all the forces acting along the boundary of the period pa- 
rallelogram or of any other fundamental domain, containing Z,, is also equal to zero. 

Thus, the representations (1.6) together with the formulas (1.9) and the additional 

condition (1.10) guarantee the doubly-periodic distribution of the stresses and the exist- 

ence of the given average stresses in the structure. The problem reduces therefore to the 

determination on J?&,~ of the densities pj (t), Qj (t) (j = 1,2, . . . , k) from the bound- 
ary conditions (1.5). Simultaneously, it is necessary to find the constants ejr rj, C1jt pj 

and ImA, which have remained undetermined after satisfying the static conditions. This 
latter constant is given by the following functional: 

ImA=Im a-$)b} 
{i 

(1.14) 

Here S is the area of the period parallelogram, b is the functional given in (1.8). 
The mechanical interpretation of the formula (1.14) will be given in Sect. 5. 

2. The rolutfon of the boundary value problem (1.5). We reduce 
the boundary value problem (1.5) to the equivalent system of Fredholm integral equa- 
tions of the second kind. To this end we pass in the representations (1.6) to the corre- 

sponding limiting values and we insert them into the boundary conditions (1.5). The 
system of integral equations relative to pj (t), qj (t) , obtained in this way, will be a 

Fredholm system if we set 

1 +x 1 + "jhj 

Pj = 1 _ hj 9 

?c + hj 
&j’hj--l, 

(I + xj) hj 

%=v-1 rj = 1 _ hj 3 
hj =$ 

It has the form 
P CtO) - Mj {P (t)~ Q (t), to} = Pj (to), to E Loo’ 

&I) 

Q (to) - Nj {q (t), p (t), to} z Qj (to), i = 1, 2, . . . . k (2.2) 

& \ Pd {(t - to) 5 (t - to) - 51 (t - tn)I - 
1.0 

1 -- 

-2x s {p(t) ($ c(t) z-- 5 (t -toW) + $4 W r: (t - to)dtl +- 
i*j 

O” to[(1 + -&)Re&,+i(l -_)ImA]+-&Z,& 
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Pj(to)= (1 + $J+t, + 5p-~c~2it 1, + +,.j (to) 

Qj(&) = _ q&z t, _ 3 ZG 
3 1 + Xjhj gj (4J 

a1 sin x = S, + 2S,, cos CL + S, co.+ a, Zc-S12fS~COSz 

G2 = SC since, loo = b Looi, . l,,*J = loo \L,,,J 
i=1 

The functionals ReA L, BI, are defined in (1.9). the functional Imii in (1.14), the 
constants 3Lj, Ctjr pj, Ej, rj are expressed in terms of the elastic characteristics of 

the components of the structure by the formulas (2.1). The quantities o,, o2 and z are 
the average normal and tangential stresses on areas perpendicular to the coordinate axes 
OL and oy. 

If k = 1, i.e. within the limits of the period parallelogram there exists only one 
inclusion, then the terms in Mj and Nj, which contain integrals along the agregate of 

the contours kioi, will vanish. In this case Loo = Loo3 (j = 1). 
It is important to note that every solution of the obtained system of equations (2.2) 

satisfy the additional condition (1.10). Indeed, we multiply the first of the equalities 
in (1.5) by dt and we integrate along the contour LOO’ (I’ 7 1.2 . . . , k). We obtain, 

by virtue of the regularity of $j (2) in Dooi 
- -- 

Re s {(p(t) -t tcP’ (t) + 2~) (t)W = 0 (2.3) 
100 

From this, taking into account the equalities (1.13) and (l.ll), we arrive at the condi- 

tion (1.10). 

3. The uniqueno theorem. By a fundamental cell of the structure we will 
understand any fundamental domain Do0 in it, which contains all the continua Dooi (j= 

1,2, . . . . k). In particular, this may be the basic period parallelogram no0 with the 

boundary I?. 
We consider the potential energy of deformation of the fundamental cell. We have 

Dr -= D,,, \ ; II;, ,j 
jz-1 (3.1) 

Here W, Wj are known positive definite quadratic forms in the components of the 
strain or of the stress, X,, , Y,t are the components of the stress vector acting on l(,,, 7 I’ 
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from the side of the domain D; X,‘, l’,,j are the components of the stress vector 
acting on Looi from the side of Do,,?; u, u and Us, uj are the displacements along 

L 00’1 correspondingly from the sides of D and Do,,i. The integration in the right- 
hand side of (3.1) is taken in such a way that the domain D, is at the left-hand side 

when moving along its boundary. Taking into account the quasi-periodicity of the dis- 
placements. the formula (1.2) and the fact that the stress vector is continued across lo0 

uninterruptedly, while the displacement vector undergoes a jump g, = {gj (t), t E 
Looi}, we rewrite (3.1) in the form 

:!I,\ Ed++& 5 I/l;jdzdy = Re 1 (X7,- iY,,)g, (t)ds + (3.2) 
u 1‘ j=i D,j l00 

Re {(S,, + &P) oIQ2, + (S, + S12e-? I % I %> 

s2, = (u + iv) I:+oy, v-1,2 

We apply formula (3.2) to the difference of two solutions, each of which satisfies the 
boundary conditions (1.5) and the static conditions (1.2). Obviously, this solution cor- 
responds to the boundary value problem with 

g, (t) = 0, s, = s, = s,, = 0 (3.3) 

From (3.3) there follows the vanishing of the right-hand side of (3.2), which shows the 

uniqueness theorem for solutions in D and in the domains D&,, (m, n = 0, & 1, 
t, . . . . -_ I’ = 1, 2, . . . ) k). From the uniqueness theorem it follows, in particular, that 

the solution of the boundary value problem (1.5) under the conditions (3.3) can be 
represented in the form 

‘pO(z) = iCz + E, lp(z) = -E, ImC=O 

vj”(z)=iC++Ej, ~jO(Z)=-_j, ImCj=O, /‘=1,2,...,k (3.4) 

2_$_LC_ %.-+I 
+Cj* 

x.+1 ~!$-.LE=+E~ 
3 3 

Here E, Ej are, in general, complex constants. The formulas (3.4) coincide with the 
solutions of the corresponding homogeneous problem for a finite multi-connected 
domain [5]. 

4. The exirtence of the tolutfon. We will assume that the function 
g* (t), is differentiable and its derivative satisfies the Holder condition. This is suffi- 
cient in order that the solutions p (t) and q (t) be differentiable and that their 

derivatives also satisfy the Holder condition on loo [4]. 
We prove that under these conditions the system of integral equations (2.2) is always 

solvable. 

Obviously, for l’j (t) = 0, Qj (t) = 0 it is necessary and sufficient that 

s, = s, = s,, = 0, L?j Ct) = 0 (4.1) 

Thus, the integral equations (2.2) with zero right-hand sides correspond to the boundary 
value problem (1.5) with zero average stresses and gj (t) = 0, 3’ = 1,2, . . . , k. 

We denote the solution of these homogeneous integral equations by p. (t) = 
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(p; it), t E LOO’) and 40 (t) = (4; (t), t E Lo;). According to (1.6), their corre- 
sponding regnlar functions can be written in the form 

(PO (2) =: & j ps (t) 5 (t - 2) df t R”2, z E Q&Oi, j 51, 2, . . . t i; 

lc.2 

Here A Ot & are determined by the formulas (2.9) and (1.14). in which everywhere in- 

stead of p (t) and q (t) we have PO ft) and @J (t) , respectively. All the remaining 
functionals which occur below and which correspond to the solutions of the homogene- 

ous equations, will also carry a zero subscript. 
Comparing the identically named functions from (3.4) and (4.21, we arrive to the 

relations 

between the constants C and Cj, E and E, we have the relations given in (3.4). 
Computing the increase of the left-hand side of the first equality in (4.3) when we 
pass from point z to z + wV (Y = $,z), we obtain, taking into account fl. 3)‘ (1.14) 

and (3.Q 

& I,, ~0 (t) 5 (C - Z) dt = E, c ho ,GZ 0, A, = iC -~z 0, Cj = 0, (4.4) 
loa 

iz2,2 . k; , . ., Y”ED 

Since ReA, =.= 0, fi, = 0, from [I. 9) we have 

nj = -&- 5 (8 (f) pn (t) -t r @) 40 ft)) dt -i- -&- $ Pa (t) zi := 0, B,, = 0 (4.5) 
loo 100 

We consider the piecewise analytic function 
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‘3 (z) ‘= & s p. (t) 5 (t - z) dt - E (4.6) 
la, 

Computing the jump of the limiting values of the function @ (z) on &a and taking 
into account the first equality in (4.4). we arrive at the conclusion that pa (t) will be 

the boundary value of some functions, regular in the domains Door. In such case the 

integral in (4.4) vanishes and we can write in view of (4.4) and (3.4) 

E = 0, Ej = 0, j-1,2, k “’ , (4.7) 

Because of the regularity of the function pi (z) in the basic period parallelogram p] 

and because of the above established property of p. (t) , we have the equality 

s PO (t) PI (t - 2) dt = 0 (4.8) 
loo 

We introduce now the following functions : 

ixj (t) = Jlj” (t), t6j (t) = Fj pj” (t) + rj Qj” (t) - T-& pj” (t), t E Looi (4.9) 

% (t) = 4j” (t), i5j ct) = aj Pj” (r) f pj Qj” (t) - 7 $ 4j” (t), j = 1, 2, . . ., k 

From the first two equalities in (4.3), taking into account (4.4) (4.5), (4.7) and (4.8), 
it follows that the functions Xj (t) and 6j (t) are the boundary values of the functions 
Xj (z) and 6j (z), regular in the domains 000’ (i = 1,2, . . . , k) . The remaining two 

equalities in (4.3) show that ej (t) and oj (t) are the boundary values of the functions 

8j (z) and oj (z) , regular in the domain D \ Doa (i = 1,2, . . . , k) and vanishing 
at infinity. Eliminating the functions p. (t) and q. (t) from the relations (4.9). we 
obtain the system of equations 

Xj(t) -t txj’(t) + 6j (t) = ej (t) + ioj' (2) t "j(t), t E LEO', j -- 1, 2, , Ii 

From Eqs. (4.10) it follows that for each fixed j, the functions Xj (z), 6j (z), 8j (z) 
and oj (z) give the solution of the problem on the elastic equilibrium of an unbounded 

nonhomogeneous medium with the separation line Lso’. In this case, Gj and xj are 
the elastic characteristics of the medium which occupies the domain Dooi; G and X 
are the corresponding characteristics in the domain D \ Do,‘; the stress and the elas- 
tic displacement vectors vary continuously at the passage through Loo’ and at infinity 

both stresses and displacements are equal to zero. 
Such a boundary value problem has only the trivial solution [5] 

Bj (2) x 0, CJj (2) z 0, Xj (2) 1 0, 6j (2) rz 0, i:i, 2 , . ..I k (4.11) 

From (4.9) and (4.11) we obtain 

pj” (I) = Qj” (t) = 0, I--i,‘,..., k (4.12) 

Thus, we have proved the existence and the uniqueness of the solution of the system of 
Fredholm integral equations (2.2). 
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ln the limiting case wi -+ 00 and o2 -+ 00, we obtain the unbounded medium with 
the group of inclusions D,,’ (j = 1,2, . . . , k). The formulas,obtained above for a regu- 

lar structure, hold also (after the corresponding limiting process) for this degenrate case. 

6. A mrcroacoplc mods1 of the Itructure. By the average strains in a 
structure we will understand the strains in its fundamental cell. Since any two congruent 
cells have the same strains, we can introduce a model in the following way. 

Definition. By the model of a regular structure we mean an elastic homogeneous 
medium having the property that whenever the tensors of the average stresses, which act 

in the structure and in the model, coincide, the corresponding tensors of the average 

strains also coincide. 
Setting q* (t) = 0, we find the relation between the average stresses and the ave- 

rage strains in the structure. 
From the formulas (1.4). taking into account (1.2) and (1.6). we find the increments 

of the displacements u and Y 
(5.1) 

2G [u (z + q) - u (z)l = (x + 1) Re (b6, +Ao,) - S,w,sina 
2G [U (z + wl) - u (z)l = (x + 1) Im (b& + AU,) + o1 (LS~,~ + Spx a) 

2G [u(z + 02) - u (z)l = (x + 1) [Re (b8, + Ah) - HImAl $- Jo&S&n a 

2G Iv (z + 02) -u (z)l = (x + 1) [Im (b6, + Ah) + HReAl - 1~~1 (S, + 
S,,cosa) 

h = Reo,, H = Imw, 

On the other hand, the displacements of the point z relative to its Congruent point 
z + wV (Y = 1,2) are connected with the average strains e,, eq, ei2 and the rota- 

tion o of the fundamental cell in the following manner: 

u (z + oi) - u (z) = oie,, u (z + 01) - u (z) = ml (ei2 + 0) (5.2) 
u (2 -I 01) - u (4 = he, + H (el, - o), u (z + OJ - v (z) = h (el, + 

0) + He, 

Inserting (5.2) into the left-hand sides of (5.1) and solving the obtained system of equa- 
tions relative to er, e2, ei2 and W, we find 

ZGe,=(x+l)Re~~ + A) -SS,sinx 

‘$ - $ 

(5.4) 

We require that the rotation of the fundamental cell be equal to zero. This condition 
can be satisfied at the expense of I mA , which occurs in (5.4). Determining I mA 
from (5.4) and taking into account Legendre’s relation 6,0, - 6,~~ = 2ni I61,we 

obtain formula (1.14). From here, its mechanical interpretation is obvious. We intro- 
duce the standard solutions of the system of equations (2.2) pi k, yi f2 (i , h = 1 ,a), 
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defined by the formulas 

p(t) = %Pll (9 + TP12 (Q + (52P22 (1) 

4 (r) = Ol%l (L) + we(t) + 's2Q22 (t) 

(5.5) 

Due to (5.5). the functionals a and b, defined in (1.8), can be represented in the form 

a. = olcll -!- ~~~~ + 02a22, b = olbll + Tb12 + c2b2, (5.6) 

Here ol, o2 and r are the average stresses on the areas perpendicular to the coordinate 
axes. and aik, bi, are the functionals corresponding to the standard solutions Pik (t), 

qik V). 
Inserting into (5.9) for ReA , its value from (1.9), making use of the equalities (5.6) 

and the relations between S,, S,, S,, and ol, 02, ‘6, given in (2.2), we obtain the 

relations between the average stresses and the average strains in the structure 

t 

1 
e1=01 +-., %Re(a1l + %)) + a2{~ Re(a,, + 2b,,) -g} + 

z {g 133 (~2 + W,)} 

P, = a1 & Re (all 
i 

- 2b,,) - $} + s2 {& + -& Re (u22 - Zb,,)} + (5.7) 

z g Re (al2 - 2b12)) 1 
2e12 = 5 I 

I 
-$+ h,} + ss {s Im b2,\ + z (2 y + g Im b,,} 

The expressions in the braces represent the macroscopic elastic parameters of the structure. 

We return to the energy relation (3.2). Taking into accent the relations (5.2) and the 

fact that in our case q* (t) = 0, we write it in the form 

rI=[SVV&dY-+ i 1 s Wj!ikdZJ = $(e151+ 2e,,t + ep32) (5.8) 

D i=l D,j 

From here it follows that a regular elastic structure and its model are energetically iden- 
tical. The relation (5.8) could have been taken as the definition of the model medium. 

The matrix of the macroscopic elastic parameters in (5.7) is symmetric and energeticr 
ally admissible. 

Indeed, assume that the i th state of the system with the components c,i, G,~, cave, 

ext, eyi, exvi corresponds to the situation when only one average stress ai = 2 acts 
(from three possible : ulr u2 and t = 0s). We denote by Iii, that part of the potential 
energy II, which corresponds to the work done by the stresses of the i th state and the 
strains of the k th state. Then formula (5.8) can be represented in the form 

; sib& = S / 2 (ale1 + 23381~ + bzea), n, = ‘ki (5.9) 
i, h-=1 

Differentiating (5.9) successively with respect to uf (i = 1, 2, 3), we find 

et = 2/S (511111 + 02rLa + zrh), ez = a/s (51nzlf s2n22 + t&a) 

k2 - 2/S (MI31f GzIT~~ + zI133), %i>O (5.10) 

Comparing (5.7) and (5.10). we arrive at the required results. The formulas (5.10) show 
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also some approximate approaches to the construction of the models of regular structures. 
Thus, we have proved the - 
Theorem. The deformation of an arbitrary regular elastic structure, possessing the 

property of quasi-periodicity of the displacements, is identical “in the large” with the 

deformation of the homogeneous anisotropic medium, characterized by the relations 

(5.7). 
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BCHO SIGNAL OF A FINITE SPHKRICAL PULSE FROM AN ELASTIC CYLINDRICAL SHELL 

PMM Vol. 37, Np2, 1973, pp. 274-284 
Ia. A. METSAVEER 

(Tallin) 
(Received May 6, 1972) 

An approximate method of calculating the echo signal of a finite, centrally- 
symmetric pressure pulse from an infinite elastic cylindrical shell in an infinite 

ideal compressible fluid is proposed. The shell motion is described by using a 
linear shell theory of Timoshenko type. The problem is solved by a triple appli- 
cation of integral transformations (in time and the longitudinal coordinate, a 
Fourier transform, and in the polar angle, a Sommerfeld- Watson transform). 

The nonstationary interaction of spherical pressure pulses in a fluid with an 

elastic cylindrical shell has been studied in [l - 31, where a Laplace time trans- 
formation, a Fourier transformation in the longitudinal coordinate, and either a 
Fourier series expansion [ 1, 33 or a Fourier transformation [2] in the polar angle 
have been used to solve the problem. However, calculation of the rapidly vary- 

ing components of the Fourier-series solution id difficult because of the slow 

convergence. Difficulties in inverting the transform appear in the application 


